Oracle Cloud Infrastructure v1.41.0 published on Wednesday, Jun 19, 2024 by Pulumi
oci.AiVision.getModel
Explore with Pulumi AI
Oracle Cloud Infrastructure v1.41.0 published on Wednesday, Jun 19, 2024 by Pulumi
This data source provides details about a specific Model resource in Oracle Cloud Infrastructure Ai Vision service.
Gets a Model by identifier
Example Usage
import * as pulumi from "@pulumi/pulumi";
import * as oci from "@pulumi/oci";
const testModel = oci.AiVision.getModel({
modelId: testModelOciAiVisionModel.id,
});
import pulumi
import pulumi_oci as oci
test_model = oci.AiVision.get_model(model_id=test_model_oci_ai_vision_model["id"])
package main
import (
"github.com/pulumi/pulumi-oci/sdk/go/oci/AiVision"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := AiVision.GetModel(ctx, &aivision.GetModelArgs{
ModelId: testModelOciAiVisionModel.Id,
}, nil)
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Oci = Pulumi.Oci;
return await Deployment.RunAsync(() =>
{
var testModel = Oci.AiVision.GetModel.Invoke(new()
{
ModelId = testModelOciAiVisionModel.Id,
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.oci.AiVision.AiVisionFunctions;
import com.pulumi.oci.AiVision.inputs.GetModelArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
final var testModel = AiVisionFunctions.getModel(GetModelArgs.builder()
.modelId(testModelOciAiVisionModel.id())
.build());
}
}
variables:
testModel:
fn::invoke:
Function: oci:AiVision:getModel
Arguments:
modelId: ${testModelOciAiVisionModel.id}
Using getModel
Two invocation forms are available. The direct form accepts plain arguments and either blocks until the result value is available, or returns a Promise-wrapped result. The output form accepts Input-wrapped arguments and returns an Output-wrapped result.
function getModel(args: GetModelArgs, opts?: InvokeOptions): Promise<GetModelResult>
function getModelOutput(args: GetModelOutputArgs, opts?: InvokeOptions): Output<GetModelResult>
def get_model(model_id: Optional[str] = None,
opts: Optional[InvokeOptions] = None) -> GetModelResult
def get_model_output(model_id: Optional[pulumi.Input[str]] = None,
opts: Optional[InvokeOptions] = None) -> Output[GetModelResult]
func GetModel(ctx *Context, args *GetModelArgs, opts ...InvokeOption) (*GetModelResult, error)
func GetModelOutput(ctx *Context, args *GetModelOutputArgs, opts ...InvokeOption) GetModelResultOutput
> Note: This function is named GetModel
in the Go SDK.
public static class GetModel
{
public static Task<GetModelResult> InvokeAsync(GetModelArgs args, InvokeOptions? opts = null)
public static Output<GetModelResult> Invoke(GetModelInvokeArgs args, InvokeOptions? opts = null)
}
public static CompletableFuture<GetModelResult> getModel(GetModelArgs args, InvokeOptions options)
// Output-based functions aren't available in Java yet
fn::invoke:
function: oci:AiVision/getModel:getModel
arguments:
# arguments dictionary
The following arguments are supported:
- Model
Id string - unique Model identifier
- Model
Id string - unique Model identifier
- model
Id String - unique Model identifier
- model
Id string - unique Model identifier
- model_
id str - unique Model identifier
- model
Id String - unique Model identifier
getModel Result
The following output properties are available:
- Average
Precision double - Average precision of the trained model
- Compartment
Id string - Compartment Identifier
- Confidence
Threshold double - Confidence ratio of the calculation
- Dictionary<string, object>
- Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- Description string
- A short description of the model.
- Display
Name string - Model Identifier, can be renamed
- Dictionary<string, object>
- Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- Id string
- Unique identifier that is immutable on creation
- Is
Quick boolMode - If It's true, Training is set for recommended epochs needed for quick training.
- Lifecycle
Details string - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- Max
Training doubleDuration In Hours - The maximum duration in hours for which the training will run.
- Metrics string
- Complete Training Metrics for successful trained model
- Model
Id string - Model
Type string - Type of the Model.
- Model
Version string - The version of the model
- Precision double
- Precision of the trained model
- Project
Id string - The OCID of the project to associate with the model.
- Recall double
- Recall of the trained model
- State string
- The current state of the Model.
- Dictionary<string, object>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- Test
Image intCount - Total number of testing Images
- Testing
Datasets List<GetModel Testing Dataset> - The base entity for a Dataset, which is the input for Model creation.
- Time
Created string - The time the Model was created. An RFC3339 formatted datetime string
- Time
Updated string - The time the Model was updated. An RFC3339 formatted datetime string
- Total
Image intCount - Total number of training Images
- Trained
Duration doubleIn Hours - Total hours actually used for training
- Training
Datasets List<GetModel Training Dataset> - The base entity for a Dataset, which is the input for Model creation.
- Validation
Datasets List<GetModel Validation Dataset> - The base entity for a Dataset, which is the input for Model creation.
- Average
Precision float64 - Average precision of the trained model
- Compartment
Id string - Compartment Identifier
- Confidence
Threshold float64 - Confidence ratio of the calculation
- map[string]interface{}
- Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- Description string
- A short description of the model.
- Display
Name string - Model Identifier, can be renamed
- map[string]interface{}
- Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- Id string
- Unique identifier that is immutable on creation
- Is
Quick boolMode - If It's true, Training is set for recommended epochs needed for quick training.
- Lifecycle
Details string - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- Max
Training float64Duration In Hours - The maximum duration in hours for which the training will run.
- Metrics string
- Complete Training Metrics for successful trained model
- Model
Id string - Model
Type string - Type of the Model.
- Model
Version string - The version of the model
- Precision float64
- Precision of the trained model
- Project
Id string - The OCID of the project to associate with the model.
- Recall float64
- Recall of the trained model
- State string
- The current state of the Model.
- map[string]interface{}
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- Test
Image intCount - Total number of testing Images
- Testing
Datasets []GetModel Testing Dataset - The base entity for a Dataset, which is the input for Model creation.
- Time
Created string - The time the Model was created. An RFC3339 formatted datetime string
- Time
Updated string - The time the Model was updated. An RFC3339 formatted datetime string
- Total
Image intCount - Total number of training Images
- Trained
Duration float64In Hours - Total hours actually used for training
- Training
Datasets []GetModel Training Dataset - The base entity for a Dataset, which is the input for Model creation.
- Validation
Datasets []GetModel Validation Dataset - The base entity for a Dataset, which is the input for Model creation.
- average
Precision Double - Average precision of the trained model
- compartment
Id String - Compartment Identifier
- confidence
Threshold Double - Confidence ratio of the calculation
- Map<String,Object>
- Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- description String
- A short description of the model.
- display
Name String - Model Identifier, can be renamed
- Map<String,Object>
- Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- id String
- Unique identifier that is immutable on creation
- is
Quick BooleanMode - If It's true, Training is set for recommended epochs needed for quick training.
- lifecycle
Details String - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- max
Training DoubleDuration In Hours - The maximum duration in hours for which the training will run.
- metrics String
- Complete Training Metrics for successful trained model
- model
Id String - model
Type String - Type of the Model.
- model
Version String - The version of the model
- precision Double
- Precision of the trained model
- project
Id String - The OCID of the project to associate with the model.
- recall Double
- Recall of the trained model
- state String
- The current state of the Model.
- Map<String,Object>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- test
Image IntegerCount - Total number of testing Images
- testing
Datasets List<GetModel Testing Dataset> - The base entity for a Dataset, which is the input for Model creation.
- time
Created String - The time the Model was created. An RFC3339 formatted datetime string
- time
Updated String - The time the Model was updated. An RFC3339 formatted datetime string
- total
Image IntegerCount - Total number of training Images
- trained
Duration DoubleIn Hours - Total hours actually used for training
- training
Datasets List<GetModel Training Dataset> - The base entity for a Dataset, which is the input for Model creation.
- validation
Datasets List<GetModel Validation Dataset> - The base entity for a Dataset, which is the input for Model creation.
- average
Precision number - Average precision of the trained model
- compartment
Id string - Compartment Identifier
- confidence
Threshold number - Confidence ratio of the calculation
- {[key: string]: any}
- Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- description string
- A short description of the model.
- display
Name string - Model Identifier, can be renamed
- {[key: string]: any}
- Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- id string
- Unique identifier that is immutable on creation
- is
Quick booleanMode - If It's true, Training is set for recommended epochs needed for quick training.
- lifecycle
Details string - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- max
Training numberDuration In Hours - The maximum duration in hours for which the training will run.
- metrics string
- Complete Training Metrics for successful trained model
- model
Id string - model
Type string - Type of the Model.
- model
Version string - The version of the model
- precision number
- Precision of the trained model
- project
Id string - The OCID of the project to associate with the model.
- recall number
- Recall of the trained model
- state string
- The current state of the Model.
- {[key: string]: any}
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- test
Image numberCount - Total number of testing Images
- testing
Datasets GetModel Testing Dataset[] - The base entity for a Dataset, which is the input for Model creation.
- time
Created string - The time the Model was created. An RFC3339 formatted datetime string
- time
Updated string - The time the Model was updated. An RFC3339 formatted datetime string
- total
Image numberCount - Total number of training Images
- trained
Duration numberIn Hours - Total hours actually used for training
- training
Datasets GetModel Training Dataset[] - The base entity for a Dataset, which is the input for Model creation.
- validation
Datasets GetModel Validation Dataset[] - The base entity for a Dataset, which is the input for Model creation.
- average_
precision float - Average precision of the trained model
- compartment_
id str - Compartment Identifier
- confidence_
threshold float - Confidence ratio of the calculation
- Mapping[str, Any]
- Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- description str
- A short description of the model.
- display_
name str - Model Identifier, can be renamed
- Mapping[str, Any]
- Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- id str
- Unique identifier that is immutable on creation
- is_
quick_ boolmode - If It's true, Training is set for recommended epochs needed for quick training.
- lifecycle_
details str - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- max_
training_ floatduration_ in_ hours - The maximum duration in hours for which the training will run.
- metrics str
- Complete Training Metrics for successful trained model
- model_
id str - model_
type str - Type of the Model.
- model_
version str - The version of the model
- precision float
- Precision of the trained model
- project_
id str - The OCID of the project to associate with the model.
- recall float
- Recall of the trained model
- state str
- The current state of the Model.
- Mapping[str, Any]
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- test_
image_ intcount - Total number of testing Images
- testing_
datasets Sequence[aivision.Get Model Testing Dataset] - The base entity for a Dataset, which is the input for Model creation.
- time_
created str - The time the Model was created. An RFC3339 formatted datetime string
- time_
updated str - The time the Model was updated. An RFC3339 formatted datetime string
- total_
image_ intcount - Total number of training Images
- trained_
duration_ floatin_ hours - Total hours actually used for training
- training_
datasets Sequence[aivision.Get Model Training Dataset] - The base entity for a Dataset, which is the input for Model creation.
- validation_
datasets Sequence[aivision.Get Model Validation Dataset] - The base entity for a Dataset, which is the input for Model creation.
- average
Precision Number - Average precision of the trained model
- compartment
Id String - Compartment Identifier
- confidence
Threshold Number - Confidence ratio of the calculation
- Map<Any>
- Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- description String
- A short description of the model.
- display
Name String - Model Identifier, can be renamed
- Map<Any>
- Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- id String
- Unique identifier that is immutable on creation
- is
Quick BooleanMode - If It's true, Training is set for recommended epochs needed for quick training.
- lifecycle
Details String - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- max
Training NumberDuration In Hours - The maximum duration in hours for which the training will run.
- metrics String
- Complete Training Metrics for successful trained model
- model
Id String - model
Type String - Type of the Model.
- model
Version String - The version of the model
- precision Number
- Precision of the trained model
- project
Id String - The OCID of the project to associate with the model.
- recall Number
- Recall of the trained model
- state String
- The current state of the Model.
- Map<Any>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- test
Image NumberCount - Total number of testing Images
- testing
Datasets List<Property Map> - The base entity for a Dataset, which is the input for Model creation.
- time
Created String - The time the Model was created. An RFC3339 formatted datetime string
- time
Updated String - The time the Model was updated. An RFC3339 formatted datetime string
- total
Image NumberCount - Total number of training Images
- trained
Duration NumberIn Hours - Total hours actually used for training
- training
Datasets List<Property Map> - The base entity for a Dataset, which is the input for Model creation.
- validation
Datasets List<Property Map> - The base entity for a Dataset, which is the input for Model creation.
Supporting Types
GetModelTestingDataset
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- Dataset
Id string - The OCID of the Data Science Labeling Dataset.
- Dataset
Type string - Type of the Dataset.
- Namespace
Name string - The namespace name of the ObjectStorage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- Dataset
Id string - The OCID of the Data Science Labeling Dataset.
- Dataset
Type string - Type of the Dataset.
- Namespace
Name string - The namespace name of the ObjectStorage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id String - The OCID of the Data Science Labeling Dataset.
- dataset
Type String - Type of the Dataset.
- namespace
Name String - The namespace name of the ObjectStorage bucket that contains the input data file.
- object String
- The object name of the input data file.
- bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id string - The OCID of the Data Science Labeling Dataset.
- dataset
Type string - Type of the Dataset.
- namespace
Name string - The namespace name of the ObjectStorage bucket that contains the input data file.
- object string
- The object name of the input data file.
- bucket str
- The name of the ObjectStorage bucket that contains the input data file.
- dataset_
id str - The OCID of the Data Science Labeling Dataset.
- dataset_
type str - Type of the Dataset.
- namespace_
name str - The namespace name of the ObjectStorage bucket that contains the input data file.
- object str
- The object name of the input data file.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id String - The OCID of the Data Science Labeling Dataset.
- dataset
Type String - Type of the Dataset.
- namespace
Name String - The namespace name of the ObjectStorage bucket that contains the input data file.
- object String
- The object name of the input data file.
GetModelTrainingDataset
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- Dataset
Id string - The OCID of the Data Science Labeling Dataset.
- Dataset
Type string - Type of the Dataset.
- Namespace
Name string - The namespace name of the ObjectStorage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- Dataset
Id string - The OCID of the Data Science Labeling Dataset.
- Dataset
Type string - Type of the Dataset.
- Namespace
Name string - The namespace name of the ObjectStorage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id String - The OCID of the Data Science Labeling Dataset.
- dataset
Type String - Type of the Dataset.
- namespace
Name String - The namespace name of the ObjectStorage bucket that contains the input data file.
- object String
- The object name of the input data file.
- bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id string - The OCID of the Data Science Labeling Dataset.
- dataset
Type string - Type of the Dataset.
- namespace
Name string - The namespace name of the ObjectStorage bucket that contains the input data file.
- object string
- The object name of the input data file.
- bucket str
- The name of the ObjectStorage bucket that contains the input data file.
- dataset_
id str - The OCID of the Data Science Labeling Dataset.
- dataset_
type str - Type of the Dataset.
- namespace_
name str - The namespace name of the ObjectStorage bucket that contains the input data file.
- object str
- The object name of the input data file.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id String - The OCID of the Data Science Labeling Dataset.
- dataset
Type String - Type of the Dataset.
- namespace
Name String - The namespace name of the ObjectStorage bucket that contains the input data file.
- object String
- The object name of the input data file.
GetModelValidationDataset
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- Dataset
Id string - The OCID of the Data Science Labeling Dataset.
- Dataset
Type string - Type of the Dataset.
- Namespace
Name string - The namespace name of the ObjectStorage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- Dataset
Id string - The OCID of the Data Science Labeling Dataset.
- Dataset
Type string - Type of the Dataset.
- Namespace
Name string - The namespace name of the ObjectStorage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id String - The OCID of the Data Science Labeling Dataset.
- dataset
Type String - Type of the Dataset.
- namespace
Name String - The namespace name of the ObjectStorage bucket that contains the input data file.
- object String
- The object name of the input data file.
- bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id string - The OCID of the Data Science Labeling Dataset.
- dataset
Type string - Type of the Dataset.
- namespace
Name string - The namespace name of the ObjectStorage bucket that contains the input data file.
- object string
- The object name of the input data file.
- bucket str
- The name of the ObjectStorage bucket that contains the input data file.
- dataset_
id str - The OCID of the Data Science Labeling Dataset.
- dataset_
type str - Type of the Dataset.
- namespace_
name str - The namespace name of the ObjectStorage bucket that contains the input data file.
- object str
- The object name of the input data file.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id String - The OCID of the Data Science Labeling Dataset.
- dataset
Type String - Type of the Dataset.
- namespace
Name String - The namespace name of the ObjectStorage bucket that contains the input data file.
- object String
- The object name of the input data file.
Package Details
- Repository
- oci pulumi/pulumi-oci
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the
oci
Terraform Provider.
Oracle Cloud Infrastructure v1.41.0 published on Wednesday, Jun 19, 2024 by Pulumi