databricks.MlflowWebhook
Explore with Pulumi AI
This resource allows you to create MLflow Model Registry Webhooks in Databricks. Webhooks enable you to listen for Model Registry events so your integrations can automatically trigger actions. You can use webhooks to automate and integrate your machine learning pipeline with existing CI/CD tools and workflows. Webhooks allow trigger execution of a Databricks job or call a web service on specific event(s) that is generated in the MLflow Registry - stage transitioning, creation of registered model, creation of transition request, etc.
Example Usage
Triggering Databricks job
import * as pulumi from "@pulumi/pulumi";
import * as databricks from "@pulumi/databricks";
import * as std from "@pulumi/std";
const me = databricks.getCurrentUser({});
const latest = databricks.getSparkVersion({});
const smallest = databricks.getNodeType({
localDisk: true,
});
const _this = new databricks.Notebook("this", {
path: me.then(me => `${me.home}/MLFlowWebhook`),
language: "PYTHON",
contentBase64: std.base64encode({
input: `import json
event_message = dbutils.widgets.get("event_message")
event_message_dict = json.loads(event_message)
print(f"event data={event_message_dict}")
`,
}).then(invoke => invoke.result),
});
const thisJob = new databricks.Job("this", {
name: me.then(me => `Terraform MLflowWebhook Demo (${me.alphanumeric})`),
tasks: [{
taskKey: "task1",
newCluster: {
numWorkers: 1,
sparkVersion: latest.then(latest => latest.id),
nodeTypeId: smallest.then(smallest => smallest.id),
},
notebookTask: {
notebookPath: _this.path,
},
}],
});
const patForWebhook = new databricks.Token("pat_for_webhook", {
comment: "MLflow Webhook",
lifetimeSeconds: 86400000,
});
const job = new databricks.MlflowWebhook("job", {
events: ["TRANSITION_REQUEST_CREATED"],
description: "Databricks Job webhook trigger",
status: "ACTIVE",
jobSpec: {
jobId: thisJob.id,
workspaceUrl: me.then(me => me.workspaceUrl),
accessToken: patForWebhook.tokenValue,
},
});
import pulumi
import pulumi_databricks as databricks
import pulumi_std as std
me = databricks.get_current_user()
latest = databricks.get_spark_version()
smallest = databricks.get_node_type(local_disk=True)
this = databricks.Notebook("this",
path=f"{me.home}/MLFlowWebhook",
language="PYTHON",
content_base64=std.base64encode(input="""import json
event_message = dbutils.widgets.get("event_message")
event_message_dict = json.loads(event_message)
print(f"event data={event_message_dict}")
""").result)
this_job = databricks.Job("this",
name=f"Terraform MLflowWebhook Demo ({me.alphanumeric})",
tasks=[databricks.JobTaskArgs(
task_key="task1",
new_cluster=databricks.JobTaskNewClusterArgs(
num_workers=1,
spark_version=latest.id,
node_type_id=smallest.id,
),
notebook_task=databricks.JobTaskNotebookTaskArgs(
notebook_path=this.path,
),
)])
pat_for_webhook = databricks.Token("pat_for_webhook",
comment="MLflow Webhook",
lifetime_seconds=86400000)
job = databricks.MlflowWebhook("job",
events=["TRANSITION_REQUEST_CREATED"],
description="Databricks Job webhook trigger",
status="ACTIVE",
job_spec=databricks.MlflowWebhookJobSpecArgs(
job_id=this_job.id,
workspace_url=me.workspace_url,
access_token=pat_for_webhook.token_value,
))
package main
import (
"fmt"
"github.com/pulumi/pulumi-databricks/sdk/go/databricks"
"github.com/pulumi/pulumi-std/sdk/go/std"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
me, err := databricks.GetCurrentUser(ctx, nil, nil)
if err != nil {
return err
}
latest, err := databricks.GetSparkVersion(ctx, nil, nil)
if err != nil {
return err
}
smallest, err := databricks.GetNodeType(ctx, &databricks.GetNodeTypeArgs{
LocalDisk: pulumi.BoolRef(true),
}, nil)
if err != nil {
return err
}
invokeBase64encode, err := std.Base64encode(ctx, &std.Base64encodeArgs{
Input: `import json
event_message = dbutils.widgets.get("event_message")
event_message_dict = json.loads(event_message)
print(f"event data={event_message_dict}")
`,
}, nil)
if err != nil {
return err
}
this, err := databricks.NewNotebook(ctx, "this", &databricks.NotebookArgs{
Path: pulumi.String(fmt.Sprintf("%v/MLFlowWebhook", me.Home)),
Language: pulumi.String("PYTHON"),
ContentBase64: invokeBase64encode.Result,
})
if err != nil {
return err
}
thisJob, err := databricks.NewJob(ctx, "this", &databricks.JobArgs{
Name: pulumi.String(fmt.Sprintf("Terraform MLflowWebhook Demo (%v)", me.Alphanumeric)),
Tasks: databricks.JobTaskArray{
&databricks.JobTaskArgs{
TaskKey: pulumi.String("task1"),
NewCluster: &databricks.JobTaskNewClusterArgs{
NumWorkers: pulumi.Int(1),
SparkVersion: pulumi.String(latest.Id),
NodeTypeId: pulumi.String(smallest.Id),
},
NotebookTask: &databricks.JobTaskNotebookTaskArgs{
NotebookPath: this.Path,
},
},
},
})
if err != nil {
return err
}
patForWebhook, err := databricks.NewToken(ctx, "pat_for_webhook", &databricks.TokenArgs{
Comment: pulumi.String("MLflow Webhook"),
LifetimeSeconds: pulumi.Int(86400000),
})
if err != nil {
return err
}
_, err = databricks.NewMlflowWebhook(ctx, "job", &databricks.MlflowWebhookArgs{
Events: pulumi.StringArray{
pulumi.String("TRANSITION_REQUEST_CREATED"),
},
Description: pulumi.String("Databricks Job webhook trigger"),
Status: pulumi.String("ACTIVE"),
JobSpec: &databricks.MlflowWebhookJobSpecArgs{
JobId: thisJob.ID(),
WorkspaceUrl: pulumi.String(me.WorkspaceUrl),
AccessToken: patForWebhook.TokenValue,
},
})
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Databricks = Pulumi.Databricks;
using Std = Pulumi.Std;
return await Deployment.RunAsync(() =>
{
var me = Databricks.GetCurrentUser.Invoke();
var latest = Databricks.GetSparkVersion.Invoke();
var smallest = Databricks.GetNodeType.Invoke(new()
{
LocalDisk = true,
});
var @this = new Databricks.Notebook("this", new()
{
Path = $"{me.Apply(getCurrentUserResult => getCurrentUserResult.Home)}/MLFlowWebhook",
Language = "PYTHON",
ContentBase64 = Std.Base64encode.Invoke(new()
{
Input = @"import json
event_message = dbutils.widgets.get(""event_message"")
event_message_dict = json.loads(event_message)
print(f""event data={event_message_dict}"")
",
}).Apply(invoke => invoke.Result),
});
var thisJob = new Databricks.Job("this", new()
{
Name = $"Terraform MLflowWebhook Demo ({me.Apply(getCurrentUserResult => getCurrentUserResult.Alphanumeric)})",
Tasks = new[]
{
new Databricks.Inputs.JobTaskArgs
{
TaskKey = "task1",
NewCluster = new Databricks.Inputs.JobTaskNewClusterArgs
{
NumWorkers = 1,
SparkVersion = latest.Apply(getSparkVersionResult => getSparkVersionResult.Id),
NodeTypeId = smallest.Apply(getNodeTypeResult => getNodeTypeResult.Id),
},
NotebookTask = new Databricks.Inputs.JobTaskNotebookTaskArgs
{
NotebookPath = @this.Path,
},
},
},
});
var patForWebhook = new Databricks.Token("pat_for_webhook", new()
{
Comment = "MLflow Webhook",
LifetimeSeconds = 86400000,
});
var job = new Databricks.MlflowWebhook("job", new()
{
Events = new[]
{
"TRANSITION_REQUEST_CREATED",
},
Description = "Databricks Job webhook trigger",
Status = "ACTIVE",
JobSpec = new Databricks.Inputs.MlflowWebhookJobSpecArgs
{
JobId = thisJob.Id,
WorkspaceUrl = me.Apply(getCurrentUserResult => getCurrentUserResult.WorkspaceUrl),
AccessToken = patForWebhook.TokenValue,
},
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.databricks.DatabricksFunctions;
import com.pulumi.databricks.inputs.GetSparkVersionArgs;
import com.pulumi.databricks.inputs.GetNodeTypeArgs;
import com.pulumi.databricks.Notebook;
import com.pulumi.databricks.NotebookArgs;
import com.pulumi.databricks.Job;
import com.pulumi.databricks.JobArgs;
import com.pulumi.databricks.inputs.JobTaskArgs;
import com.pulumi.databricks.inputs.JobTaskNewClusterArgs;
import com.pulumi.databricks.inputs.JobTaskNotebookTaskArgs;
import com.pulumi.databricks.Token;
import com.pulumi.databricks.TokenArgs;
import com.pulumi.databricks.MlflowWebhook;
import com.pulumi.databricks.MlflowWebhookArgs;
import com.pulumi.databricks.inputs.MlflowWebhookJobSpecArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
final var me = DatabricksFunctions.getCurrentUser();
final var latest = DatabricksFunctions.getSparkVersion();
final var smallest = DatabricksFunctions.getNodeType(GetNodeTypeArgs.builder()
.localDisk(true)
.build());
var this_ = new Notebook("this", NotebookArgs.builder()
.path(String.format("%s/MLFlowWebhook", me.applyValue(getCurrentUserResult -> getCurrentUserResult.home())))
.language("PYTHON")
.contentBase64(StdFunctions.base64encode(Base64encodeArgs.builder()
.input("""
import json
event_message = dbutils.widgets.get("event_message")
event_message_dict = json.loads(event_message)
print(f"event data={event_message_dict}")
""")
.build()).result())
.build());
var thisJob = new Job("thisJob", JobArgs.builder()
.name(String.format("Terraform MLflowWebhook Demo (%s)", me.applyValue(getCurrentUserResult -> getCurrentUserResult.alphanumeric())))
.tasks(JobTaskArgs.builder()
.taskKey("task1")
.newCluster(JobTaskNewClusterArgs.builder()
.numWorkers(1)
.sparkVersion(latest.applyValue(getSparkVersionResult -> getSparkVersionResult.id()))
.nodeTypeId(smallest.applyValue(getNodeTypeResult -> getNodeTypeResult.id()))
.build())
.notebookTask(JobTaskNotebookTaskArgs.builder()
.notebookPath(this_.path())
.build())
.build())
.build());
var patForWebhook = new Token("patForWebhook", TokenArgs.builder()
.comment("MLflow Webhook")
.lifetimeSeconds(86400000)
.build());
var job = new MlflowWebhook("job", MlflowWebhookArgs.builder()
.events("TRANSITION_REQUEST_CREATED")
.description("Databricks Job webhook trigger")
.status("ACTIVE")
.jobSpec(MlflowWebhookJobSpecArgs.builder()
.jobId(thisJob.id())
.workspaceUrl(me.applyValue(getCurrentUserResult -> getCurrentUserResult.workspaceUrl()))
.accessToken(patForWebhook.tokenValue())
.build())
.build());
}
}
resources:
this:
type: databricks:Notebook
properties:
path: ${me.home}/MLFlowWebhook
language: PYTHON
contentBase64:
fn::invoke:
Function: std:base64encode
Arguments:
input: "import json\n \nevent_message = dbutils.widgets.get(\"event_message\")\nevent_message_dict = json.loads(event_message)\nprint(f\"event data={event_message_dict}\")\n"
Return: result
thisJob:
type: databricks:Job
name: this
properties:
name: Terraform MLflowWebhook Demo (${me.alphanumeric})
tasks:
- taskKey: task1
newCluster:
numWorkers: 1
sparkVersion: ${latest.id}
nodeTypeId: ${smallest.id}
notebookTask:
notebookPath: ${this.path}
patForWebhook:
type: databricks:Token
name: pat_for_webhook
properties:
comment: MLflow Webhook
lifetimeSeconds: 8.64e+07
job:
type: databricks:MlflowWebhook
properties:
events:
- TRANSITION_REQUEST_CREATED
description: Databricks Job webhook trigger
status: ACTIVE
jobSpec:
jobId: ${thisJob.id}
workspaceUrl: ${me.workspaceUrl}
accessToken: ${patForWebhook.tokenValue}
variables:
me:
fn::invoke:
Function: databricks:getCurrentUser
Arguments: {}
latest:
fn::invoke:
Function: databricks:getSparkVersion
Arguments: {}
smallest:
fn::invoke:
Function: databricks:getNodeType
Arguments:
localDisk: true
POSTing to URL
import * as pulumi from "@pulumi/pulumi";
import * as databricks from "@pulumi/databricks";
const url = new databricks.MlflowWebhook("url", {
events: ["TRANSITION_REQUEST_CREATED"],
description: "URL webhook trigger",
httpUrlSpec: {
url: "https://my_cool_host/webhook",
},
});
import pulumi
import pulumi_databricks as databricks
url = databricks.MlflowWebhook("url",
events=["TRANSITION_REQUEST_CREATED"],
description="URL webhook trigger",
http_url_spec=databricks.MlflowWebhookHttpUrlSpecArgs(
url="https://my_cool_host/webhook",
))
package main
import (
"github.com/pulumi/pulumi-databricks/sdk/go/databricks"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := databricks.NewMlflowWebhook(ctx, "url", &databricks.MlflowWebhookArgs{
Events: pulumi.StringArray{
pulumi.String("TRANSITION_REQUEST_CREATED"),
},
Description: pulumi.String("URL webhook trigger"),
HttpUrlSpec: &databricks.MlflowWebhookHttpUrlSpecArgs{
Url: pulumi.String("https://my_cool_host/webhook"),
},
})
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Databricks = Pulumi.Databricks;
return await Deployment.RunAsync(() =>
{
var url = new Databricks.MlflowWebhook("url", new()
{
Events = new[]
{
"TRANSITION_REQUEST_CREATED",
},
Description = "URL webhook trigger",
HttpUrlSpec = new Databricks.Inputs.MlflowWebhookHttpUrlSpecArgs
{
Url = "https://my_cool_host/webhook",
},
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.databricks.MlflowWebhook;
import com.pulumi.databricks.MlflowWebhookArgs;
import com.pulumi.databricks.inputs.MlflowWebhookHttpUrlSpecArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var url = new MlflowWebhook("url", MlflowWebhookArgs.builder()
.events("TRANSITION_REQUEST_CREATED")
.description("URL webhook trigger")
.httpUrlSpec(MlflowWebhookHttpUrlSpecArgs.builder()
.url("https://my_cool_host/webhook")
.build())
.build());
}
}
resources:
url:
type: databricks:MlflowWebhook
properties:
events:
- TRANSITION_REQUEST_CREATED
description: URL webhook trigger
httpUrlSpec:
url: https://my_cool_host/webhook
Access Control
- MLflow webhooks could be configured only by workspace admins.
Related Resources
The following resources are often used in the same context:
- End to end workspace management guide.
- databricks.Directory to manage directories in Databricks Workpace.
- databricks.MlflowExperiment to manage MLflow experiments in Databricks.
- databricks.MlflowModel to create MLflow models in Databricks.
- databricks.Notebook to manage Databricks Notebooks.
- databricks.Notebook data to export a notebook from Databricks Workspace.
- databricks.Repo to manage Databricks Repos.
Create MlflowWebhook Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new MlflowWebhook(name: string, args: MlflowWebhookArgs, opts?: CustomResourceOptions);
@overload
def MlflowWebhook(resource_name: str,
args: MlflowWebhookArgs,
opts: Optional[ResourceOptions] = None)
@overload
def MlflowWebhook(resource_name: str,
opts: Optional[ResourceOptions] = None,
events: Optional[Sequence[str]] = None,
description: Optional[str] = None,
http_url_spec: Optional[MlflowWebhookHttpUrlSpecArgs] = None,
job_spec: Optional[MlflowWebhookJobSpecArgs] = None,
model_name: Optional[str] = None,
status: Optional[str] = None)
func NewMlflowWebhook(ctx *Context, name string, args MlflowWebhookArgs, opts ...ResourceOption) (*MlflowWebhook, error)
public MlflowWebhook(string name, MlflowWebhookArgs args, CustomResourceOptions? opts = null)
public MlflowWebhook(String name, MlflowWebhookArgs args)
public MlflowWebhook(String name, MlflowWebhookArgs args, CustomResourceOptions options)
type: databricks:MlflowWebhook
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args MlflowWebhookArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args MlflowWebhookArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args MlflowWebhookArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args MlflowWebhookArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args MlflowWebhookArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var mlflowWebhookResource = new Databricks.MlflowWebhook("mlflowWebhookResource", new()
{
Events = new[]
{
"string",
},
Description = "string",
HttpUrlSpec = new Databricks.Inputs.MlflowWebhookHttpUrlSpecArgs
{
Url = "string",
Authorization = "string",
EnableSslVerification = false,
Secret = "string",
},
JobSpec = new Databricks.Inputs.MlflowWebhookJobSpecArgs
{
AccessToken = "string",
JobId = "string",
WorkspaceUrl = "string",
},
ModelName = "string",
Status = "string",
});
example, err := databricks.NewMlflowWebhook(ctx, "mlflowWebhookResource", &databricks.MlflowWebhookArgs{
Events: pulumi.StringArray{
pulumi.String("string"),
},
Description: pulumi.String("string"),
HttpUrlSpec: &databricks.MlflowWebhookHttpUrlSpecArgs{
Url: pulumi.String("string"),
Authorization: pulumi.String("string"),
EnableSslVerification: pulumi.Bool(false),
Secret: pulumi.String("string"),
},
JobSpec: &databricks.MlflowWebhookJobSpecArgs{
AccessToken: pulumi.String("string"),
JobId: pulumi.String("string"),
WorkspaceUrl: pulumi.String("string"),
},
ModelName: pulumi.String("string"),
Status: pulumi.String("string"),
})
var mlflowWebhookResource = new MlflowWebhook("mlflowWebhookResource", MlflowWebhookArgs.builder()
.events("string")
.description("string")
.httpUrlSpec(MlflowWebhookHttpUrlSpecArgs.builder()
.url("string")
.authorization("string")
.enableSslVerification(false)
.secret("string")
.build())
.jobSpec(MlflowWebhookJobSpecArgs.builder()
.accessToken("string")
.jobId("string")
.workspaceUrl("string")
.build())
.modelName("string")
.status("string")
.build());
mlflow_webhook_resource = databricks.MlflowWebhook("mlflowWebhookResource",
events=["string"],
description="string",
http_url_spec=databricks.MlflowWebhookHttpUrlSpecArgs(
url="string",
authorization="string",
enable_ssl_verification=False,
secret="string",
),
job_spec=databricks.MlflowWebhookJobSpecArgs(
access_token="string",
job_id="string",
workspace_url="string",
),
model_name="string",
status="string")
const mlflowWebhookResource = new databricks.MlflowWebhook("mlflowWebhookResource", {
events: ["string"],
description: "string",
httpUrlSpec: {
url: "string",
authorization: "string",
enableSslVerification: false,
secret: "string",
},
jobSpec: {
accessToken: "string",
jobId: "string",
workspaceUrl: "string",
},
modelName: "string",
status: "string",
});
type: databricks:MlflowWebhook
properties:
description: string
events:
- string
httpUrlSpec:
authorization: string
enableSslVerification: false
secret: string
url: string
jobSpec:
accessToken: string
jobId: string
workspaceUrl: string
modelName: string
status: string
MlflowWebhook Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
The MlflowWebhook resource accepts the following input properties:
- Events List<string>
The list of events that will trigger execution of Databricks job or POSTing to an URL, for example,
MODEL_VERSION_CREATED
,MODEL_VERSION_TRANSITIONED_STAGE
,TRANSITION_REQUEST_CREATED
, etc. Refer to the Webhooks API documentation for a full list of supported events.Configuration must include one of
http_url_spec
orjob_spec
blocks, but not both.- Description string
- Optional description of the MLflow webhook.
- Http
Url MlflowSpec Webhook Http Url Spec - Job
Spec MlflowWebhook Job Spec - Model
Name string - Name of MLflow model for which webhook will be created. If the model name is not specified, a registry-wide webhook is created that listens for the specified events across all versions of all registered models.
- Status string
- Optional status of webhook. Possible values are
ACTIVE
,TEST_MODE
,DISABLED
. Default isACTIVE
.
- Events []string
The list of events that will trigger execution of Databricks job or POSTing to an URL, for example,
MODEL_VERSION_CREATED
,MODEL_VERSION_TRANSITIONED_STAGE
,TRANSITION_REQUEST_CREATED
, etc. Refer to the Webhooks API documentation for a full list of supported events.Configuration must include one of
http_url_spec
orjob_spec
blocks, but not both.- Description string
- Optional description of the MLflow webhook.
- Http
Url MlflowSpec Webhook Http Url Spec Args - Job
Spec MlflowWebhook Job Spec Args - Model
Name string - Name of MLflow model for which webhook will be created. If the model name is not specified, a registry-wide webhook is created that listens for the specified events across all versions of all registered models.
- Status string
- Optional status of webhook. Possible values are
ACTIVE
,TEST_MODE
,DISABLED
. Default isACTIVE
.
- events List<String>
The list of events that will trigger execution of Databricks job or POSTing to an URL, for example,
MODEL_VERSION_CREATED
,MODEL_VERSION_TRANSITIONED_STAGE
,TRANSITION_REQUEST_CREATED
, etc. Refer to the Webhooks API documentation for a full list of supported events.Configuration must include one of
http_url_spec
orjob_spec
blocks, but not both.- description String
- Optional description of the MLflow webhook.
- http
Url MlflowSpec Webhook Http Url Spec - job
Spec MlflowWebhook Job Spec - model
Name String - Name of MLflow model for which webhook will be created. If the model name is not specified, a registry-wide webhook is created that listens for the specified events across all versions of all registered models.
- status String
- Optional status of webhook. Possible values are
ACTIVE
,TEST_MODE
,DISABLED
. Default isACTIVE
.
- events string[]
The list of events that will trigger execution of Databricks job or POSTing to an URL, for example,
MODEL_VERSION_CREATED
,MODEL_VERSION_TRANSITIONED_STAGE
,TRANSITION_REQUEST_CREATED
, etc. Refer to the Webhooks API documentation for a full list of supported events.Configuration must include one of
http_url_spec
orjob_spec
blocks, but not both.- description string
- Optional description of the MLflow webhook.
- http
Url MlflowSpec Webhook Http Url Spec - job
Spec MlflowWebhook Job Spec - model
Name string - Name of MLflow model for which webhook will be created. If the model name is not specified, a registry-wide webhook is created that listens for the specified events across all versions of all registered models.
- status string
- Optional status of webhook. Possible values are
ACTIVE
,TEST_MODE
,DISABLED
. Default isACTIVE
.
- events Sequence[str]
The list of events that will trigger execution of Databricks job or POSTing to an URL, for example,
MODEL_VERSION_CREATED
,MODEL_VERSION_TRANSITIONED_STAGE
,TRANSITION_REQUEST_CREATED
, etc. Refer to the Webhooks API documentation for a full list of supported events.Configuration must include one of
http_url_spec
orjob_spec
blocks, but not both.- description str
- Optional description of the MLflow webhook.
- http_
url_ Mlflowspec Webhook Http Url Spec Args - job_
spec MlflowWebhook Job Spec Args - model_
name str - Name of MLflow model for which webhook will be created. If the model name is not specified, a registry-wide webhook is created that listens for the specified events across all versions of all registered models.
- status str
- Optional status of webhook. Possible values are
ACTIVE
,TEST_MODE
,DISABLED
. Default isACTIVE
.
- events List<String>
The list of events that will trigger execution of Databricks job or POSTing to an URL, for example,
MODEL_VERSION_CREATED
,MODEL_VERSION_TRANSITIONED_STAGE
,TRANSITION_REQUEST_CREATED
, etc. Refer to the Webhooks API documentation for a full list of supported events.Configuration must include one of
http_url_spec
orjob_spec
blocks, but not both.- description String
- Optional description of the MLflow webhook.
- http
Url Property MapSpec - job
Spec Property Map - model
Name String - Name of MLflow model for which webhook will be created. If the model name is not specified, a registry-wide webhook is created that listens for the specified events across all versions of all registered models.
- status String
- Optional status of webhook. Possible values are
ACTIVE
,TEST_MODE
,DISABLED
. Default isACTIVE
.
Outputs
All input properties are implicitly available as output properties. Additionally, the MlflowWebhook resource produces the following output properties:
- Id string
- The provider-assigned unique ID for this managed resource.
- Id string
- The provider-assigned unique ID for this managed resource.
- id String
- The provider-assigned unique ID for this managed resource.
- id string
- The provider-assigned unique ID for this managed resource.
- id str
- The provider-assigned unique ID for this managed resource.
- id String
- The provider-assigned unique ID for this managed resource.
Look up Existing MlflowWebhook Resource
Get an existing MlflowWebhook resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.
public static get(name: string, id: Input<ID>, state?: MlflowWebhookState, opts?: CustomResourceOptions): MlflowWebhook
@staticmethod
def get(resource_name: str,
id: str,
opts: Optional[ResourceOptions] = None,
description: Optional[str] = None,
events: Optional[Sequence[str]] = None,
http_url_spec: Optional[MlflowWebhookHttpUrlSpecArgs] = None,
job_spec: Optional[MlflowWebhookJobSpecArgs] = None,
model_name: Optional[str] = None,
status: Optional[str] = None) -> MlflowWebhook
func GetMlflowWebhook(ctx *Context, name string, id IDInput, state *MlflowWebhookState, opts ...ResourceOption) (*MlflowWebhook, error)
public static MlflowWebhook Get(string name, Input<string> id, MlflowWebhookState? state, CustomResourceOptions? opts = null)
public static MlflowWebhook get(String name, Output<String> id, MlflowWebhookState state, CustomResourceOptions options)
Resource lookup is not supported in YAML
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- resource_name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- Description string
- Optional description of the MLflow webhook.
- Events List<string>
The list of events that will trigger execution of Databricks job or POSTing to an URL, for example,
MODEL_VERSION_CREATED
,MODEL_VERSION_TRANSITIONED_STAGE
,TRANSITION_REQUEST_CREATED
, etc. Refer to the Webhooks API documentation for a full list of supported events.Configuration must include one of
http_url_spec
orjob_spec
blocks, but not both.- Http
Url MlflowSpec Webhook Http Url Spec - Job
Spec MlflowWebhook Job Spec - Model
Name string - Name of MLflow model for which webhook will be created. If the model name is not specified, a registry-wide webhook is created that listens for the specified events across all versions of all registered models.
- Status string
- Optional status of webhook. Possible values are
ACTIVE
,TEST_MODE
,DISABLED
. Default isACTIVE
.
- Description string
- Optional description of the MLflow webhook.
- Events []string
The list of events that will trigger execution of Databricks job or POSTing to an URL, for example,
MODEL_VERSION_CREATED
,MODEL_VERSION_TRANSITIONED_STAGE
,TRANSITION_REQUEST_CREATED
, etc. Refer to the Webhooks API documentation for a full list of supported events.Configuration must include one of
http_url_spec
orjob_spec
blocks, but not both.- Http
Url MlflowSpec Webhook Http Url Spec Args - Job
Spec MlflowWebhook Job Spec Args - Model
Name string - Name of MLflow model for which webhook will be created. If the model name is not specified, a registry-wide webhook is created that listens for the specified events across all versions of all registered models.
- Status string
- Optional status of webhook. Possible values are
ACTIVE
,TEST_MODE
,DISABLED
. Default isACTIVE
.
- description String
- Optional description of the MLflow webhook.
- events List<String>
The list of events that will trigger execution of Databricks job or POSTing to an URL, for example,
MODEL_VERSION_CREATED
,MODEL_VERSION_TRANSITIONED_STAGE
,TRANSITION_REQUEST_CREATED
, etc. Refer to the Webhooks API documentation for a full list of supported events.Configuration must include one of
http_url_spec
orjob_spec
blocks, but not both.- http
Url MlflowSpec Webhook Http Url Spec - job
Spec MlflowWebhook Job Spec - model
Name String - Name of MLflow model for which webhook will be created. If the model name is not specified, a registry-wide webhook is created that listens for the specified events across all versions of all registered models.
- status String
- Optional status of webhook. Possible values are
ACTIVE
,TEST_MODE
,DISABLED
. Default isACTIVE
.
- description string
- Optional description of the MLflow webhook.
- events string[]
The list of events that will trigger execution of Databricks job or POSTing to an URL, for example,
MODEL_VERSION_CREATED
,MODEL_VERSION_TRANSITIONED_STAGE
,TRANSITION_REQUEST_CREATED
, etc. Refer to the Webhooks API documentation for a full list of supported events.Configuration must include one of
http_url_spec
orjob_spec
blocks, but not both.- http
Url MlflowSpec Webhook Http Url Spec - job
Spec MlflowWebhook Job Spec - model
Name string - Name of MLflow model for which webhook will be created. If the model name is not specified, a registry-wide webhook is created that listens for the specified events across all versions of all registered models.
- status string
- Optional status of webhook. Possible values are
ACTIVE
,TEST_MODE
,DISABLED
. Default isACTIVE
.
- description str
- Optional description of the MLflow webhook.
- events Sequence[str]
The list of events that will trigger execution of Databricks job or POSTing to an URL, for example,
MODEL_VERSION_CREATED
,MODEL_VERSION_TRANSITIONED_STAGE
,TRANSITION_REQUEST_CREATED
, etc. Refer to the Webhooks API documentation for a full list of supported events.Configuration must include one of
http_url_spec
orjob_spec
blocks, but not both.- http_
url_ Mlflowspec Webhook Http Url Spec Args - job_
spec MlflowWebhook Job Spec Args - model_
name str - Name of MLflow model for which webhook will be created. If the model name is not specified, a registry-wide webhook is created that listens for the specified events across all versions of all registered models.
- status str
- Optional status of webhook. Possible values are
ACTIVE
,TEST_MODE
,DISABLED
. Default isACTIVE
.
- description String
- Optional description of the MLflow webhook.
- events List<String>
The list of events that will trigger execution of Databricks job or POSTing to an URL, for example,
MODEL_VERSION_CREATED
,MODEL_VERSION_TRANSITIONED_STAGE
,TRANSITION_REQUEST_CREATED
, etc. Refer to the Webhooks API documentation for a full list of supported events.Configuration must include one of
http_url_spec
orjob_spec
blocks, but not both.- http
Url Property MapSpec - job
Spec Property Map - model
Name String - Name of MLflow model for which webhook will be created. If the model name is not specified, a registry-wide webhook is created that listens for the specified events across all versions of all registered models.
- status String
- Optional status of webhook. Possible values are
ACTIVE
,TEST_MODE
,DISABLED
. Default isACTIVE
.
Supporting Types
MlflowWebhookHttpUrlSpec, MlflowWebhookHttpUrlSpecArgs
- Url string
- External HTTPS URL called on event trigger (by using a POST request). Structure of payload depends on the event type, refer to documentation for more details.
- string
- Value of the authorization header that should be sent in the request sent by the wehbook. It should be of the form
<auth type> <credentials>
, e.g.Bearer <access_token>
. If set to an empty string, no authorization header will be included in the request. - Enable
Ssl boolVerification - Enable/disable SSL certificate validation. Default is
true
. For self-signed certificates, this field must befalse
AND the destination server must disable certificate validation as well. For security purposes, it is encouraged to perform secret validation with the HMAC-encoded portion of the payload and acknowledge the risk associated with disabling hostname validation whereby it becomes more likely that requests can be maliciously routed to an unintended host. - Secret string
- Shared secret required for HMAC encoding payload. The HMAC-encoded payload will be sent in the header as
X-Databricks-Signature: encoded_payload
.
- Url string
- External HTTPS URL called on event trigger (by using a POST request). Structure of payload depends on the event type, refer to documentation for more details.
- string
- Value of the authorization header that should be sent in the request sent by the wehbook. It should be of the form
<auth type> <credentials>
, e.g.Bearer <access_token>
. If set to an empty string, no authorization header will be included in the request. - Enable
Ssl boolVerification - Enable/disable SSL certificate validation. Default is
true
. For self-signed certificates, this field must befalse
AND the destination server must disable certificate validation as well. For security purposes, it is encouraged to perform secret validation with the HMAC-encoded portion of the payload and acknowledge the risk associated with disabling hostname validation whereby it becomes more likely that requests can be maliciously routed to an unintended host. - Secret string
- Shared secret required for HMAC encoding payload. The HMAC-encoded payload will be sent in the header as
X-Databricks-Signature: encoded_payload
.
- url String
- External HTTPS URL called on event trigger (by using a POST request). Structure of payload depends on the event type, refer to documentation for more details.
- String
- Value of the authorization header that should be sent in the request sent by the wehbook. It should be of the form
<auth type> <credentials>
, e.g.Bearer <access_token>
. If set to an empty string, no authorization header will be included in the request. - enable
Ssl BooleanVerification - Enable/disable SSL certificate validation. Default is
true
. For self-signed certificates, this field must befalse
AND the destination server must disable certificate validation as well. For security purposes, it is encouraged to perform secret validation with the HMAC-encoded portion of the payload and acknowledge the risk associated with disabling hostname validation whereby it becomes more likely that requests can be maliciously routed to an unintended host. - secret String
- Shared secret required for HMAC encoding payload. The HMAC-encoded payload will be sent in the header as
X-Databricks-Signature: encoded_payload
.
- url string
- External HTTPS URL called on event trigger (by using a POST request). Structure of payload depends on the event type, refer to documentation for more details.
- string
- Value of the authorization header that should be sent in the request sent by the wehbook. It should be of the form
<auth type> <credentials>
, e.g.Bearer <access_token>
. If set to an empty string, no authorization header will be included in the request. - enable
Ssl booleanVerification - Enable/disable SSL certificate validation. Default is
true
. For self-signed certificates, this field must befalse
AND the destination server must disable certificate validation as well. For security purposes, it is encouraged to perform secret validation with the HMAC-encoded portion of the payload and acknowledge the risk associated with disabling hostname validation whereby it becomes more likely that requests can be maliciously routed to an unintended host. - secret string
- Shared secret required for HMAC encoding payload. The HMAC-encoded payload will be sent in the header as
X-Databricks-Signature: encoded_payload
.
- url str
- External HTTPS URL called on event trigger (by using a POST request). Structure of payload depends on the event type, refer to documentation for more details.
- str
- Value of the authorization header that should be sent in the request sent by the wehbook. It should be of the form
<auth type> <credentials>
, e.g.Bearer <access_token>
. If set to an empty string, no authorization header will be included in the request. - enable_
ssl_ boolverification - Enable/disable SSL certificate validation. Default is
true
. For self-signed certificates, this field must befalse
AND the destination server must disable certificate validation as well. For security purposes, it is encouraged to perform secret validation with the HMAC-encoded portion of the payload and acknowledge the risk associated with disabling hostname validation whereby it becomes more likely that requests can be maliciously routed to an unintended host. - secret str
- Shared secret required for HMAC encoding payload. The HMAC-encoded payload will be sent in the header as
X-Databricks-Signature: encoded_payload
.
- url String
- External HTTPS URL called on event trigger (by using a POST request). Structure of payload depends on the event type, refer to documentation for more details.
- String
- Value of the authorization header that should be sent in the request sent by the wehbook. It should be of the form
<auth type> <credentials>
, e.g.Bearer <access_token>
. If set to an empty string, no authorization header will be included in the request. - enable
Ssl BooleanVerification - Enable/disable SSL certificate validation. Default is
true
. For self-signed certificates, this field must befalse
AND the destination server must disable certificate validation as well. For security purposes, it is encouraged to perform secret validation with the HMAC-encoded portion of the payload and acknowledge the risk associated with disabling hostname validation whereby it becomes more likely that requests can be maliciously routed to an unintended host. - secret String
- Shared secret required for HMAC encoding payload. The HMAC-encoded payload will be sent in the header as
X-Databricks-Signature: encoded_payload
.
MlflowWebhookJobSpec, MlflowWebhookJobSpecArgs
- Access
Token string - The personal access token used to authorize webhook's job runs.
- Job
Id string - ID of the Databricks job that the webhook runs.
- Workspace
Url string - URL of the workspace containing the job that this webhook runs. If not specified, the job’s workspace URL is assumed to be the same as the workspace where the webhook is created.
- Access
Token string - The personal access token used to authorize webhook's job runs.
- Job
Id string - ID of the Databricks job that the webhook runs.
- Workspace
Url string - URL of the workspace containing the job that this webhook runs. If not specified, the job’s workspace URL is assumed to be the same as the workspace where the webhook is created.
- access
Token String - The personal access token used to authorize webhook's job runs.
- job
Id String - ID of the Databricks job that the webhook runs.
- workspace
Url String - URL of the workspace containing the job that this webhook runs. If not specified, the job’s workspace URL is assumed to be the same as the workspace where the webhook is created.
- access
Token string - The personal access token used to authorize webhook's job runs.
- job
Id string - ID of the Databricks job that the webhook runs.
- workspace
Url string - URL of the workspace containing the job that this webhook runs. If not specified, the job’s workspace URL is assumed to be the same as the workspace where the webhook is created.
- access_
token str - The personal access token used to authorize webhook's job runs.
- job_
id str - ID of the Databricks job that the webhook runs.
- workspace_
url str - URL of the workspace containing the job that this webhook runs. If not specified, the job’s workspace URL is assumed to be the same as the workspace where the webhook is created.
- access
Token String - The personal access token used to authorize webhook's job runs.
- job
Id String - ID of the Databricks job that the webhook runs.
- workspace
Url String - URL of the workspace containing the job that this webhook runs. If not specified, the job’s workspace URL is assumed to be the same as the workspace where the webhook is created.
Import
-> Note Importing this resource is not currently supported.
To learn more about importing existing cloud resources, see Importing resources.
Package Details
- Repository
- databricks pulumi/pulumi-databricks
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the
databricks
Terraform Provider.